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; Some Definitions. ..
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» Particle—the propagation of momentum, energy, and other
“Information” through space-time.

e Force- something which changes a particle in some way
(sometimes to adifferent particle).
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; The Standard Model — The Fundamental Particles
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; Relativistic Quantum Mechanical Perturbation Theory

Non-relativistic perturbation theory:

Free particle

Discrete interaction

Relativistic perturbation theory “Feynman Diagram”:

Free particle

T Discrete absorption of

intermediate “virtual”
particle.
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;; The Intermediate V ector Bosons (Mediators of Force)
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Some Basic QED Interactions
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Some Basic Weak Interactions
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; Some Basic Strong Interaction (QCD)
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PROPERTIES OF THE INTERACTIONS
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How Quarks Combine
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e Quarkscomeinthree“colors’: red, green, blue

e Combineto form “colorless’ (white) particles:
— Three quarks (or antiquarks), one of each color= “Baryons’
— A quark of one color and an anti-quark of the associated anti-color =" Mesons’

Baryons ggq and Antibaryons qgq Mesons qq
Baryons are fermionlc hadrons. Mesons are bosonic hadrons.
There are about 120 types of baryons. There are about 140 types of mesons.
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; The Big Questions in Particle Physics
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e What isthe origin of mass?

— The standard model divergesif we just “plug-in” amassfor all the
particles.

— An effective mass comes in through the interaction with a pervasive
field with a non-zero vacuum expectation value.

— Perturbations about this vacuum give us a “Higgs Particle’, which
probably has amass 100 GeV<m< 1TeV
 What isthe nature of CP violation?

— The physics of matter in aright-handed universe is almost the same as
that for anti-matter in a left-handed universe.

— Thissmall difference is accomodated in the standard model by
complex terms in the quark mixing matrix.

— Thismust be firmly established, and if true, the associated parameters
must be measured.
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Big Questions (cont’d...)

* Do neutrinos have mass/do they mix?

In the Standard Model, all neutrino masses are zero by definition.
There is growing evidence that neutrinos do have mass.

» Solar neutrino deficit.

» Atmospheric neutrino “problem”.

o LSND result.
If true this could explain the “dark matter” in the universe, at least
partialy.
Must be verified, and if true, the details must be studied.
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Big Questions (cont’d...)
o What lies beyond?
— The standard model eventually diverse
— Thereisaphilosophical (aesthetic? religious?) impulse to unify the
guark and the lepton sectors, as well asinclude gravity.
o Supersymmetry (SUSY):
— Every fermion is associated with a boson.

— Predicts a veritable zoo of new particles, the lightest of which
should have m<2TeV.

 String theory
— All particles are states of fundamental objects (strings)
— Supersymmetry is a consequence.

— Asyet, absolutely no experimental evidence for either of these
theories. Must keep looking.
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What we Actually Study
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Interaction

Incident particle / Incident particle
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What We Actually Detect
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Almost all of the particles of most interest to us are very

unstable; we must detect them indirectly through their decay
products.

Everything in the universe ultimately decaysto

Y,€, PV, V,,V, +antl - particles

"> CANNOT be individually detected

 In addition, the following particles live long enough (c7>1m)
to be detected directly:

n, 1,0 ,K",K_+ anti-particles
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Classes of Particle Detection
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« Charged Particle Tracking
— Precision: decay position determination.

— Spectroscopy: measure momentum in conjunction with magnetic
field.

— Projection: match information from different detectors.

o Calorimetry
— Electromagnetic: measure energy of photons, identify electrons.
— Hadronic: measure energy of neutral hadrons, identify types of
charged particles.
o Particle Identification
— Indirect: based on interaction characteristics
— Direct: determine mass by measuring velocity
o dE/dX
* Time-of-flight
o Cerenkov Radiation
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; Charged Particle Tracking

« Ascharged particles traverse matter, they deposit energy
according to the Bethe-Bloch equation:
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; The Detection of Charge
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o Ultimately amost all types of detectors work through the
detection of ionized charges, which induce electrical signals
as they move.
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Track

A charged particle ionizes gas
molecules as it passes.

*Thisionized charge drifts

toward awirewhichisheld a
relatively positive potential.

;; Proportional Wire Chambers

———

*Astheionized charge gets close to the wire,
the rapidly increasing field resultsin an
avalanche of multiple ionization.

*The motion of the resulting ions away from
the wire induces asignal.

*Thetotal signal is proportional to the total
ionized charge.

*The time of the signal can accurately measure
the position of the track.
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;; Silicon Detectors
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Typical Charged Tracking Resolution
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Resolution Dead
Detector Type Accuracy (rms) Time Time
Bubble chamber 10 to 150 pm 1 ms 50 ms®
Streamer chamber 300 pm 2 us 100 ms
Proportional chamber > 300 pmbe 50 ns 200 ns
Drift chamber 50 to 300 pm 2 nsé 100 ns
Scintillator — 150 ps 10 ns
Emulsion 1 pm — —

= : pitch ©

Silicon strip 310 7 f f
Silicon pixel 2 pm¥ f f

Multiple pulsing time.
300 pm is for 1 mm pitch.
® Delay line cathode readout can give £150 pm parallel to anode wire.

For two chambers.

® The highest resolution (“7") is obtained for small-pitch detectors (525 pm) with
pulse-height-weighted center finding.

f Limited at present by properties of the readout electronics. ( Time resolution of

< 15 ns is planned for the SDC silicon tracker.)

§ Analog readout of 34 pm pitch, monolithic pixel detectors.
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; Electromagnetic Calorimetry

Energetic photons in material can
convert to e+e- pairs through
Bethe-Heltler pair production

Energetic electrons
in material loose

energy through /\f\s\
bremsstrahlung. v
ung 1 /\I\S\\

These processes continue,
ultimately depositing all the
energy of theincident particle
(et, e, ory)inawell
characterized shower.

O
A
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; Electromagnetic Calorimetry (cont’ d)

There are basically two types of EM calorimeters...

)

AN Total Absorption

shower

\
Scintillation
light
shower Sampling
Absorption layer Detection layer
(shower develops) (scintillator, PWC,
lig. Ar, etc)
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5@ Electromagnetic Calorimeter Resolution
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Detector Resolution
Nal(T1) (Crystal Ball [52]; 20 Xj) E.T%fﬂlﬂ
Lead glass (OPAL [53]) 5%/ V' E

Lead-liquid argon (NA31 [54]; 80 cells: 27 Xg, 1.5 mm Pb  7.5%/+E
+ 0.6 mm Al + 0.8 mm 10 + 4 mm LA)

Lead-scintillator sandwich (ARGUS [55], LAPP-LAL [56]) 9%_/@

Lead-scintillator spaghetti (CERN test module) [57] 13%/vE
Proportional wire chamber (MAC; 32 cells: 13 X, 23%/VE
2.5 mm typemetal 4+ 1.6 mm Al) [58] /

Energy in GeV
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; Hadronic Calorimetry

P EM Component

/<.§/ Hadronic Shower

\

Nuclear collision Escaping neutron

*Based on nuclear interactions.

L onger and messier than EM showers.

*Always use sampling calorimeters (e.g. steel+scintillator)
*Very good resolution would be 50% / JE
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Particle | dentification
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* We can broadly distinguish particles by how they interact
(we'll discuss thisin aminute).

e But particles of the same time class (eg charged hadrons)
must be distinguished by their different masses.

* We determine the mass by independently measuring the
momentum and vel ocity.

* Oneway to do thisisto directly measure the time of flight
— Can usually measure time to better than 100 ps
— Inacentral detector, this can separate tand K up to about 1 GeV

 |n addition, there are common indirect ways to measure
velocity.
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5@y dE/dx

e Recall that as particles
traverse matter, the energy
they deposit is dependent
only on the vel ocity.

o —particles of the same
momentum will deposit
different amounts of energy
If their masses are different.

e Thiscan be easlly measured
with proportional wire
chambers.
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; Cerenkov Radiation
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* A charged particle which istraveling faster than the speed of
light in a particular medium will radiate its energy in the
form of photonsin a cone whose angleis 1

e
R

* The existence of such light can be used to discriminate two

particles of different masses for arange of momenta
(threshold Cerenkov detector).

* OR the angle can be directly measured (more accurate but
more difficult).
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5@g Genera Detector Layout and Classes of Particles
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Precision
Tracking

Particle ID
(sometimes)
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;; Example — the BELL E Detector

Belle N
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@3 DAQ Overview
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Pictures (Tracking)

Central Drift
Chamber
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; Pictures (Electromagnetic Calorimeter)
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; Pictures (Particle | D)

Module Assembly

Barrel Detector
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; Pictures (K-long Catcher/Muon Tracker)

Barrel Module
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Endcap Module

Physics 312, April 24th 2000



Pictures (DAQ/Control)
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; All Finished!!
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What an Event Looks Lik
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